DEPENDENCE OF KAZHDAN CONSTANTS ON GENERATING SUBSETS

BY

TSACHIK GELANDER

Institute of Mathematics, The Hebrew University of Jerusalem Givat Ram, Jerusalem 91904, Israel e-mail: tsachik@math.huji.ac.il

AND

Andrzej Żuk

CNRS, Ecole Normale Supérieure de Lyon, Unité de Mathématiques Pures et Appliquées 46, Allée d'Italie, F-69364 Lyon cedex 07, France e-mail: azuk@umpa.ens-lyon.fr

and

Department of Mathematics, University of Chicago 5734 S. University Avenue, Chicago, IL 60637, USA e-mail: zuk@math.uchicago.edu

ABSTRACT

In this paper we answer a question of A. Lubotzky by giving examples of groups having property (T) without uniform Kazhdan constants. We show that many lattices in Lie groups do not admit a Kazhdan constant which is independent of the generating subset.

In 1967 Kazhdan defined property (T). Let Γ be a discrete group generated by a finite set S. The group Γ has Kazhdan property (T) (or, briefly speaking, Γ is a Kazhdan group) if there exists a positive constant $\varepsilon(S)$ such that for every unitary representation (π, \mathcal{H}) of Γ with no invariant vectors and for any $u \in \mathcal{H}$ there exists $s \in S$ such that $\|\pi(s)u - u\| \geq \varepsilon(S)\|u\|$. Such a constant is called a Kazhdan constant with respect to the set S. The fact that a given group has property (T) does not depend on the set of generators, i.e., if for some finite set of generators S there exists a positive constant $\varepsilon(S)$, then for any finite set

Received November 8, 2000

of generators S' there exists a positive constant $\varepsilon(S')$. There are few explicit computations or estimates of Kazhdan constants (see [1], [2], [3], [4], [13], [16], [18]).

A. Lubotzky asked ([8] page 126) whether for a group with property (T) there exists a uniform Kazhdan constant $\varepsilon > 0$ which is independent of S. The question about uniform Kazhdan constants is related to other problems. For example, it is closely related to questions about the uniform exponential growth (see [6]). It is easy to see that if an infinite group Γ has uniform Kazhdan constant, then it has uniform exponential growth (see [15]). Other related questions are those concerning the independence speculation: the independence of being a family of expanders from the generating set (see [9], see also [8]). A. Lubotzky and A. Wigderson recently gave a counterexample to the independence speculation (see [10]).

In this paper we give first examples of Kazhdan groups without uniform Kazhdan constants.

For a unitary representation (π, \mathcal{H}) we define the uniform Kazhdan constant $K(\pi, \Gamma)$,

$$K(\pi, \Gamma) = \inf_{S} \inf_{0 \neq u \in \mathcal{H}} \max_{s \in S} \frac{\|\pi(s)u - u\|}{\|u\|},$$

where the infimum is taken over all finite generating sets S. We say that Γ has uniform property (T) if $\inf_{\pi} K(\pi, \Gamma) > 0$ where the infimum is taken over all unitary representations with no invariant vectors. We define also

$$K(\pi, \Gamma, k) = \inf_{|S| \le k} \inf_{0 \ne u \in \mathcal{H}} \max_{s \in S} \frac{\|\pi(s)u - u\|}{\|u\|}$$

(here S runs over the generating sets of size $\leq k$), and we say that Γ has uniform property (T) with respect to generating sets of bounded size, if $K(\pi, \Gamma, k) > 0$ for any $k \geq d(\Gamma)$ (where $d(\Gamma)$ denotes the minimal size of a generating set of Γ) and, of course, for any π .

The purpose of this note is to prove the following

THEOREM: Let Γ be a Kazhdan group densely embedded (or more generally, which has a dense homomorphic image) in a connected topological group G. Assume that there exists a continuous unitary representation (π_G, \mathcal{H}) of G without invariant vectors. Then Γ does not have uniform property (T).

If, moreover, G is a connected Lie group, then Γ does not have uniform property (T) even with respect to generating sets of bounded size.

The assumption on the existence of a continuous unitary representation without invariant vectors is automatically satisfied if G is locally compact. One can take the action by left multiplication on $L^2(G)$, if G is not compact, and on $L^2(G)$ (the orthogonal complement to the constant functions), if G is compact.

An example of G and Γ that satisfy the assumption of the theorem is $G = \mathrm{SO}_n(\mathbb{R})$ and $\Gamma = \mathrm{SO}_n(\mathbb{Z}[1/5])$ for $n \geq 5$ (see [11]), or $\Gamma = \mathrm{SO}(q) \cap \mathrm{SL}_n(\mathbb{Z}[\sqrt{2}])$ where q is the quadratic form $q(x) = x_1^2 + \dots + x_{n-2}^2 - \sqrt{2}(x_{n-1}^2 + x_n^2)$ (see [17]). In both cases Γ is a Kazhdan group, being isomorphic (in a natural way) to a lattice in a Kazhdan Lie group. Margulis and Sullivan used these groups to answer the Banach-Ruziewicz problem about the uniqueness of finitely additive rotation invariant measures defined on all Lebesgue measurable subsets of the n-sphere. As in our situation, they needed dense subgroups with property (T) in Lie groups (in their case just $\mathrm{SO}_n(\mathbb{R})$).

More generally, there are two main families of examples of Kazhdan groups densely mapped into connected simple Lie groups (see [18]):

- 1. Assume that L is a connected Kazhdan semi-simple Lie group and $\Gamma \leq L$ is a cocompact arithmetic lattice. Γ is commensurable to the projection to L of the group of integral points $\mathbf{H}(\mathbb{Z})$, where \mathbf{H} is a \mathbb{Q} -algebraic group with $\mathbf{H}(\mathbb{R}) \cong L \times K$. Assume that the compact group K is non-trivial. The projection of Γ to K is dense and thus we can take G to be any simple factor of K.
- 2. Any S-arithmetic lattice in a product (of Kazhdan simple groups) for which at least one of the places is archimedean and at least one of the places is non-archimedean and corresponds to an anisotropic group, is densely embedded in a connected Lie group (e.g., each of those that lie in the archimedean places). In some examples this connected group cannot be compact: e.g., $\mathrm{SL}_3(\mathbb{Z}[\frac{1}{p}])$ is naturally densely embedded in $\mathrm{SL}_3(\mathbb{R})$, but every homorphism of $\mathrm{SL}_3(\mathbb{Z}[\frac{1}{p}])$ into a compact connected group has finite image.

Proof of the Theorem: Throughout the proof we will assume, for simplicity, that Γ is actually embedded in G. The proof remains valid for the more general case (where $f \colon \Gamma \to G$ is not necessarily an embedding) if one works with pre-images in Γ of subsets of G instead of intersecting such subsets with Γ .

Let Ω be a neighborhood of the identity in G. As G is connected Ω generates G.

LEMMA 1: The set $\Gamma \cap \Omega$ contains a finite set S_{Ω} which generates Γ .

Proof: First of all $\Gamma \cap \Omega$ generates Γ . Indeed, Γ is dense in G and therefore $\Gamma \cap \Omega$ is dense in Ω . As Ω generates G, $\Gamma \cap \Omega$ generates a dense subgroup in G. This means that for any $\gamma \in \Gamma$ there exists γ' in the group generated by $\Gamma \cap \Omega$

which is in the $\gamma\Omega$ neighborhood of γ , i.e., $(\gamma)^{-1}\gamma' \in \Omega$. But this implies that γ itself is in the group generated by $\Gamma \cap \Omega$.

The group Γ is finitely generated by a finite set S. As $\Gamma \cap \Omega$ generates Γ every element in S can be expressed as a product of a finite number of elements in $\Gamma \cap \Omega$ which provides a finite generating set $S_{\Omega} \subset \Gamma \cap \Omega$.

Denote by π_{Γ} the restriction of π_G to Γ . The representation $(\pi_{\Gamma}, \mathcal{H})$ has no non-zero invariant vectors, because Γ is dense in G and (π_G, \mathcal{H}) is continuous. Another consequence of the continuity of (π_G, \mathcal{H}) is that, for any non-zero vector $u \in \mathcal{H}$,

$$\lim_{\Omega \to id} \sup_{g \in \Omega \cap \Gamma} \frac{\|\pi_G(g)u - u\|}{\|u\|} = 0.$$

In particular, by Lemma 1

$$K(\pi_{\Gamma}, \Gamma) \leq \lim_{\Omega \to id} \max_{s \in S_{\Omega}} \frac{\|\pi_{\Gamma}(s)u - u\|}{\|u\|} = 0.$$

This proves the first assertion.

Assume now that G is a connected Lie group. Since Γ is dense and Kazhdan G is non-solvable and therefore, by dividing out the radical, and then mapping to a simple factor, we may assume that G is simple. Let

$$n = \dim(G)$$
, $d = d(\Gamma) =$ the minimal size of a generating set of Γ .

We will show that $K(\pi_{\Gamma}, \Gamma, d+n) = 0$, i.e., that Γ does not have uniform property Γ with respect to generating sets of size d+n. In light of the above argument, it is enough to find generating sets of size d+n in an arbitrarily small identity neighborhood.

Let \mathfrak{g} be the Lie algebra of G. For $X \in \mathfrak{g}$ we denote by $B_r^{\mathfrak{g}}(X)$ the ball of radius r around X in \mathfrak{g} .

Assume that ε is sufficiently small so that $B_{\varepsilon}^{\mathfrak{g}}(0)$ is a Zassenhaus neighborhood in the sense of [14] (see definition 8.22), and that exp: $B_{\varepsilon}^{\mathfrak{g}}(0) \to B_{\varepsilon}^{\mathfrak{g}}(1)$ is a diffeomorphism. Denote its inverse by

$$\log: B_{\varepsilon}^G(1) \to B_{\varepsilon}^{\mathfrak{g}}(0).$$

Let $\{X_i\}_{i=1}^n \subset B_{\varepsilon}^{\mathfrak{g}}(0)$ be a basis for the vector space \mathfrak{g} , and let δ be sufficiently small so that

- 1. $B^{\mathfrak{g}}_{\delta}(X_i) \subset B^{\mathfrak{g}}_{\varepsilon}(0)$ for any $1 \leq i \leq n$, and
- 2. for any selection $Y_i \in B^{\mathfrak{g}}_{\delta}(X_i)$ we have $\mathfrak{g} = \operatorname{span}\{Y_i\}_{i=1}^n$.

Let $B_i = \exp B_{\delta}^{\mathfrak{g}}(X_i)$. Take $y_i \in B_i$ and put $Y_i = \log y_i \in B_{\delta}^{\mathfrak{g}}(X_i)$.

LEMMA 2: The group $A = \langle y_i : 1 \leq i \leq n \rangle$ is dense in G.

Proof: Let N be the identity component of the closure of A, i.e.,

$$N = \overline{A}^0$$
.

N is closed, and thus, by a theorem of Cartan, N is a Lie subgroup. Let $\mathfrak{n} \subset \mathfrak{g}$ be its Lie algebra.

First notice that $\dim \mathfrak{n} > 0$. Otherwise A would be discrete, and therefore, by the Kazhdan-Margulis theorem (see [14] theorem 8.16), the y_i 's would be inside a connected nilpotent Lie subgroup. But then the Y_i 's would generate a nilpotent Lie algebra. This is a contradiction to the fact that $\{Y_i\}$ spans the simple Lie algebra \mathfrak{g} .

We claim further that $\mathfrak n$ is an ideal in $\mathfrak g$. Since $\mathfrak g=\operatorname{span}\{Y_i\}$ it is enough to show that $\operatorname{ad}(Y_i)(\mathfrak n)=\mathfrak n$ for any $1\leq i\leq n$, but

$$\operatorname{ad}(Y_i)(\mathfrak{n}) = \operatorname{ad}(\log y_i)(\mathfrak{n}) = (\log \operatorname{Ad}(y_i))(\mathfrak{n}),$$

and since $y_i \in A$, it normalizes $N = \overline{A}^0$, i.e., $Ad(y_i)(\mathfrak{n}) = \mathfrak{n}$, which implies also that $\log Ad(y_i)(\mathfrak{n}) = \mathfrak{n}$.

It follows that N is a normal connected subgroup of positive dimension. Since G is simple, N = G. Thus A is dense.

Now, since Γ is dense in G we can take the y_i 's to be elements in Γ . If $S = \{\gamma_1, \gamma_2, \ldots, \gamma_d\}$ is any generating set for Γ then, by the same argument as in the proof of Lemma 1, we can find $\gamma'_1, \ldots, \gamma'_d \in B^G_{\varepsilon}(1)$ such that the set $\{y_1, \ldots, y_n, \gamma'_1, \ldots, \gamma'_d\}$ would generate Γ (with products of y_i^{\pm} 's we can get as close as needed to γ_j , and with one more element $\gamma'_j \in \Gamma \cap B^G_{\varepsilon}(1)$ we can actually get γ_j).

Remark: Since the simple Lie algebra \mathfrak{g} is generated by two elements, we can find, in a similar way, a generating set of size $|S| = d(\Gamma) + 2$ with arbitrarily small Kazhdan constant.

There are Kazhdan groups for which our method does not apply, and the question whether they have uniform property (T) remains open. A particularly interesting example is the group $SL_3(\mathbb{Z})$; specifically, is there a positive uniform Kazhdan constant for all generating sets (or for those of size ≤ 100) of $SL_3(\mathbb{Z})$? A. Eskin, S. Mozes and H. Oh have recently shown that $SL_3(\mathbb{Z})$, as well as any other linear group, has uniform exponential growth (see [5]).

ACKNOWLEDGEMENT: We would like to thank Alexander Lubotzky and Yehuda Shalom for attracting our attention to the problem concerning uniform Kazhdan constants and their interest and remarks about this paper.

References

- [1] M. Bekka and M. Meyer, On Kazhdan's property (T) and Kazhdan constants associated to a laplacian on $SL(3,\mathbb{R})$, Journal of Lie Theory 10 (2000), 93–105.
- [2] M. Burger, Kazhdan constants for SL(3, Z), Journal für die reine und angewandte Mathematik 413 (1991), 36-67.
- [3] D. I. Cartwright, W. Młotkowski and T. Steger, Property (T) and \widetilde{A}_2 groups, Annales de l'Institut Fourier (Grenoble) 44 (1994), 213–248.
- [4] Y. Colin de Verdière, Spectres de graphes, Cours Spécialisés, SMF, Paris, 1998.
- [5] A. Eskin, S. Mozes and H.Oh, in preparation.
- [6] M. Gromov, J. Lafontaine and P. Pansu, Structures métriques pour les variétés riemanniennes, Cedic F. Nathan, Paris, 1981.
- [7] P. de la Harpe and A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175 (1989).
- [8] A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, Birkhäuser, Boston, 1994.
- [9] A. Lubotzky and B. Weiss, Groups and expanders, in Expanding Graphs (J. Friedman, ed.), DIMACS series, Vol. 10, American Mathematical Society, Providence, RI, 1993, pp. 95–109.
- [10] A. Lubotzky and A. Wigderson, in preparation.
- [11] G. Margulis, Some remarks on invariant means, Monatshefte f
 ür Mathematik 90 (1980), 233–235.
- [12] G. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer, Berlin, 1991.
- [13] H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, preprint.
- [14] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer, Berlin, 1972.
- [15] Y. Shalom, Explicit Kazhdan constants for representations of semisimple and arithmetic groups, Annales de l'Institut Fourier (Grenoble) 50 (2000), 833-863.
- [16] Y. Shalom, Bounded generation and Kazhdan property (T), Publications Mathématiques de l'Institut des Hautes Études Scientifiques 90 (2001), 145–168.
- [17] D. Sullivan, For n > 3 there is only one finitely additive rotationally invariant measure on the n-sphere on all Lebesgue measurable sets, Bulletin of the American Mathematical Society 4 (1981), 121–123.
- [18] A. Zuk, Property (T) and Kazhdan constants for discrete groups, preprint.